

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY :: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code: Computer Organization & Architecture(20CS0504) **Year & Sem :** II B.Tech & I-Sem

Course & Branch: B.Tech - CSE, CSIT, CSM, CIC Regulation: R20

UNIT –I BASIC STRUCTURE OF COMPUTERS

	a	Define Computer architecture, organization and list basic functional units in	[L1][CO1]	[04M]
1		Computer.		
	b	Sketch the basic functional unit of computer and explain each unit in detail.	[L3][CO2]	[08M]
2	a	Differentiate between I/O unit and memory Unit.	[L4][CO6]	[04M]
	b	Describe in detail about the Basic Operational Concepts with neat diagram	[L2][CO1]	[08M]
3	a	Discuss on basic I/O operations.	[L2][CO1]	[06M]
	b	Discuss about Bus structure with neat sketch.	[L2][CO1]	[06M]
4	a	Illustrate the types of Bus.	[L3][CO1]	[06M]
•	b	Identify various steps of instruction cycle.	[L3][CO1]	[06M]
5	a	Demonstrate the Instruction Cycle with neat diagram.	[L2][CO1]	[08M]
	b	Differentiate between fetch cycle and execute cycle.	[L4][CO1]	[04M]
6	a	List out the Computer Instructions and Explain about it.	[L1][CO1]	[06M]
	b	Explain in detail about Data Transfer Instructions.	[L2][CO2]	[06M]
7	Ass	ess the Data Manipulation Instructions and their types.	[L5][CO1]	[12M]
8	a	Describe the Arithmetic Instructions with example.	[L2][CO1]	[06M]
0	b	Illustrate Logical instructions with example.	[L3][CO1]	[06M]
9	a	Discuss about Program counter and Memory Address register.	[L2][CO3]	[04M]
9	b	Explain Program Control Instructions.	[L2][CO1]	[08M]
10	Illu	strate the addressing modes with neat sketch.	[L3][CO3]	[12M]

UNIT –II <u>DATA REPRESENTATION & COMPUTER ARITHMETIC</u>

1	a	Illustrate the signed number representations	[L3][CO3]	[06M]
2	b	Explain fixed point representations	[L2][CO3]	[06M]
	a	Compare fixed and floating point representations.	[L5][CO1]	[08M]
_	b	Describe about Character representation.	[L2][CO1]	[04M]
3	a	Develop a Flowchart for Addition and Subtraction.	[L3][CO3]	[04M]
3	b	Illustrate the steps for Addition and Subtraction with an example.	[L3][CO3]	[08M]
4	a	Prepare a flowchart for multiplication of positive numbers.	[L6][CO3]	[04M]
•	b	Illustrate the steps multiplication algorithm with an example.	[L3][CO3]	[08M]
5	a	Evaluate (0010) ₂ with (0011) ₂ using multiplication algorithm.	[L4][CO3]	[06M]
	b	Explain about signed and unsigned numbers representation in binary.	[L2][CO1]	[06M]
6		ustrate the steps in Booth multiplication algorithm and Draw the flowchart with an ample.	[L3][CO3]	[12M]
7	In	vent the steps of Division restoring and draw the flow chart with an example.	[L6][CO3]	[12M]
	Sh	ow the step by step signed-operand multiplication process using Booth algorithm		
8	W	hen (-9) and (-13) are multiplied. Assume 5-bit registers to hold signed numbers and (-9) to	[L4][CO3]	[12M]
	be the multiplicand			
	a	Show the steps of signed operand multiplication with example?	[L2][CO1]	[06M]
9	b	Write an algorithm for the division of floating point number and illustrate with an example.	[L2][CO3]	[06M]
10	De	escribe the Floating point numbers, its operations and implementation.	[L2][CO1]	[12M]

UNIT -III

REGISTER TRANSFER & MICRO OPERATIONS AND CPU CONTROL UNIT DESIGN

1 2	a	Define register transfer language? Explain in detail.	[L4][CO3]	[06M]
	b	Design the block diagram of the hardware that implements the following register transfer statement P: R2←R1.	[L6][CO3]	[06M]
	a	Summarize the Register Representations and way it is used.	[L5][CO3]	[06M]
3	b	Construct a 4-line common bus system with a neat diagram.	[L6][CO3]	[06M]
	a	Examine the Bus transfer with neat diagram.	[L3][CO3]	[08M]
	b	Draw and explain four bit adder-subtractor circuit.	[L2][CO3]	[04M]
4	a	Illustrate the three-state bus buffers with neat sketch.	[L3][CO3]	[06M]
-	b	Discuss about binary increment with neat sketch.	[L4][CO3]	[06M]
5	Exp	plain in detail about Arithmetic Micro Operations?	[L3][CO3]	[12M]
6	De	Describe about Logic Micro Operations with neat representation?		[12M]
7	a	Explain shift micro operations and draw 4 bit combinational circuit shifter.	[L3][CO3]	[08M]
'	b	Differentiate between Hardwired Control and Micro-programmed control.	[L4][CO6]	[04M]
8	Wh	at is Hardwired Control? Explain in detail with a neat diagram.	[L4][CO6]	[12M]
9	a	Describe the Micro Programmed Control with a neat sketch.	[L2][CO6]	[06M]
	b	Draw and explain typical hardware control unit.	[L2][CO6]	[06M]
10	Sui	vey the Address Sequencing with neat diagram.	[L4][CO4]	[12M]

UNIT –IV MEMORY ORGANIZATION

1	a	Assess the Memory Hierarchy with neat sketch	[L5][CO3]	[08M]
1	b	Differentiate between RAM & ROM?	[L4][CO2]	[04M]
2	Wh	at is Main Memory and what are the types in it? Explain in detail.	[L4][CO3]	[12M]
3	Categorize the semiconductor RAM in detail.		[L4][CO3]	[12M]
4	a	Distinguish between SRAM & DRAM?	[L4][CO2]	[04M]
7	b	Discuss briefly about synchronous DRAMs?	[L2][CO3]	[08M]
5	a	Classify in detail about ROM.	[L4][CO3]	[04M]
	b	Compare the various cache mapping techniques.	[L2][CO4]	[08M]
6	a	Define Cache Memory? Explain in detail its mapping functions.	[L3][CO4]	[08M]
	b	Explain about hit and miss in the memory?	[L2][CO4]	[04M]
7	a	What is Virtual Memory? Discuss how paging helps in implementing virtual memory.	[L2][CO4]	[08M]
	b	What is the need of a page replacement? Discuss the LRU page replacement algorithm with an example.	[L2][CO3]	[04M]
8	a	Compare various types of Auxiliary memory.	[L2][CO2]	[06M]
	b	Define track and sector. Analyze the importance of auxiliary memory?	[L4][CO3]	[06M]
9	Des	scribe the use of DMA controllers in a computer system with a neat block diagram.	[L2][CO6]	[12M]
10	a	Describe in detail about the DMA operations with neat diagram.	[L2][CO6]	[06M]
	b	Give detailed notes on DMA transfers with neat sketch.	[L4][CO6]	[06M]

UNIT –V <u>PIPELINIG & PARALLEL PROCESSORS</u>

1	De	scribe the concept of Pipelining with clear example.	[L2][CO5]	[12M]
2	a	Explain in detail about basic pipeline processing?	[L2][CO6]	[06M]
	b	Sketch the arithmetic pipeline for floating point multiplication?	[L3][CO5]	[06M]
3	a	Anticipate the conflicts in pipelining and describe about it.	[L6][CO5]	[06M]
3	b	Illustrate the instruction pipeline with neat timing diagram.	[L3][CO5]	[06M]
4	a	Construct 4-segment Instruction Pipeline and explain.	[L6][CO5]	[06M]
7	b	Define the hazards? Explain in detail about instruction hazards?	[L3][CO1]	[06M]
5		egorize and discuss various forms of parallel processing based on Flynn's onomy with a neat sketch.	[L4][CO5]	[12M]
6	a	Visualize the characteristics of Multiprocessor.	[L1][CO5]	[06M]
	b	Implement three types multiprocessor system with neat sketch.	[L6][CO5]	[06M]
7	Describe the Interconnection Structures in detail.		[L3][CO6]	[12M]
8	a	Sketch 8×8 omega switching network and explain it.	[L3][CO6]	[06M]
0	b	Express about crossbar switch with neat sketch?	[L2][CO6]	[06M]
9	a	What is multistage network? Appraise it with neat sketch.	[L5][CO6]	[06M]
7	b	Analyze about the hyper cube network with neat sketch?	[L4][CO6]	[06M]
10	Illu	strate the cache coherency.	[L4][CO6]	[12M]

Prepared by:

- 1. Mr P.Nagaraju Asst. Professor/CSE
- 2. Mr B.Pavan Kumar Asst. Professor/CSE
- 3. Mr N.Babu Asst. Professor/CSE
- 4. Mrs R.Surekha Asst. Professor/CSE